Basic Biostatistics

B. Burt Gerstman

Statistics for Public Health Practice

Chapter 15: Multiple Linear Regression

In Chapter 15:

- 15.1 The General Idea
- 15.2 The Multiple Regression Model
- 15.3 Categorical Explanatory Variables
- 15.4 Regression Coefficients
- [15.5 ANOVA for Multiple Linear Regression]
- [15.6 Examining Conditions]

[Not covered in recorded presentation]

15.1 The General Idea

Simple regression considers the relation between a single explanatory variable and response variable

The General Idea

Multiple regression simultaneously considers the influence of multiple explanatory variables on a response variable Y

The intent is to look at the independent effect of each variable while "adjusting out" the influence of potential confounders

Regression Modeling

 A simple regression model (one independent variable) fits a regression line in 2-dimensional space

 A multiple regression model with two explanatory variables fits a regression plane in 3dimensional space

Simple Regression Model

Regression coefficients are estimated by minimizing ∑residuals² (i.e., sum of the squared residuals) to derive this model:

$$\hat{y} = a + bx$$

The standard error of the regression ($s_{Y|x}$) is based on the squared residuals:

$$S_{Y|x} = \sqrt{\sum_{\text{residuals}^2/df_{\text{res}}}}$$

Multiple Regression Model

Again, estimates for the *multiple* slope coefficients are derived by minimizing ∑residuals² to derive this multiple regression model:

$$\hat{y} = a + b_1 x_1 + b_2 x_2$$

Again, the **standard error of the regression** is based on the ∑residuals²:

$$S_{Y|x} = \sqrt{\sum_{\text{residuals}^2/df_{\text{res}}}}$$

Multiple Regression Model

- Intercept α predicts where the regression plane crosses the axis
- Slope for variable X₁
 (β₁) predicts the
 change in Y per unit
 X₁ holding X₂
 constant
- The slope for variable X₂ (β₂) predicts the change in Y per unit X₂ holding X₁ constant

15:

 X_1

Observation y_i

Response Plane

 X_2

Multiple Regression Model

A multiple regression model with *k* independent variables fits a regression "surface" in k + 1 dimensional space (cannot be visualized)

15.3 Categorical Explanatory Variables in Regression Models

- Categorical independent variables can be incorporated into a regression model by converting them into 0/1 ("dummy") variables
- For binary variables, code dummies "0" for "no" and 1 for "yes"

Dummy Variables, More than two levels

For categorical variables with *k* categories, use *k*–1 dummy variables

SMOKE2 has three levels, initially coded

0 = non-smoker

1 = former smoker

2 = current smoker

Use k - 1 = 3 - 1 = 2 dummy variables to code this information like this:

SMOKE2	DUMMY1	DUMMY2	
0	O	0	
1	1	0	
2	0	1	

Illustrative Example

Childhood respiratory health survey.

- Binary explanatory variable (SMOKE) is coded 0 for non-smoker and 1 for smoker
- Response variable Forced Expiratory
 Volume (FEV) is measured in liters/second
- The mean FEV in nonsmokers is 2.566
- The mean FEV in smokers is 3.277

Example, cont.

- Regress FEV on SMOKE least squares regression line:
 ŷ = 2.566 + 0.711X
- Intercept (2.566) = the mean FEV of group 0
- Slope = the mean difference in FEV
 = 3.277 2.566 = 0.711
- t_{stat} = 6.464 with 652 df, P ≈ 0.000 (same as equal variance t test)
- The 95% CI for slope β is 0.495 to 0.927 (same as the 95% CI for $\mu_1 \mu_0$)

Dummy Variable SMOKE

Smoking increases FEV?

- Children who smoked had higher mean FEV
- How can this be true given what we know about the deleterious respiratory effects of smoking?
- ANS: Smokers were older than the nonsmokers
- AGE confounded the relationship between SMOKE and FEV
- A multiple regression model can be used to adjust for AGE in this situation

15.4 Multiple Regression Coefficients

Rely on software to calculate multiple regression statistics

Example

SPSS output for our example:

a. Dependent Variable: FEV

The multiple regression model is:

FEV = 0.367 + -.209(SMOKE) + .231(AGE)

Basic Biostat

Multiple Regression Coefficients, cont.

- The slope coefficient for AGE is .231, suggesting that each year of age in associated with an increase of .231 FEV units on average (after adjusting for SMOKE)

Inference About the Coefficients

Inferential statistics are calculated for each regression coefficient. For example, in testing

 H_0 : $\beta_1 = 0$ (SMOKE coefficient controlling for AGE)

$$t_{\text{stat}} = -2.588 \text{ and } P = 0.010$$

Coefficients

Unstandardi Coefficien			Standardized Coefficients				
Model		В	Std. Error	Beta	t	Sig.	
1	(Constant)	.367	.081		4.511	.000	<u>L</u> ,
	smoke	209	.081	072	-2.588	.010	
	age	.231	.008	.786	28.176	.000	

a. Dependent Variable: fev

$$df = n - k - 1 = 654 - 2 - 1 = 651$$

Inference About the Coefficients

The 95% confidence interval for this slope of SMOKE controlling for AGE is 0.368 to -0.050

Coefficients^a

		95% Confidence Interval for B		
Model		Lower Bound	Upper Bound	
1	(Constant)	.207	.527	
	smoke	368	050	
	age	.215	.247	

a. Dependent Variable: fev

15.5 ANOVA for Multiple Regression

pp. 343 – 346 (not covered in some courses)

15.6 Examining Regression Conditions

- Conditions for multiple regression mirror those of simple regression
 - Linearity
 - Independence
 - Normality
 - Equal variance
- These are evaluated by analyzing the pattern of the residuals

Residual Plot

Figure: Standardized residuals plotted against standardized predicted values for the illustration (FEV regressed on AGE and SMOKE)

Same number of points above and below horizontal of 0 ⇒ no major departures from linearity

Higher variability at higher values of Y
⇒ unequal variance (biologically reasonable)

Basic Biostat

15: Multiple Linear Regression

Examining Conditions

Normal Q-Q plot of standardized residuals

Fairly straight diagonal suggests no major departures from Normality

Basic Biostat